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© ALBIN LINDBÄCK, June 2012.

Examiner: ULF ASSARSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
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Abstract

The optimization problem of estimating parameters using a maximum a-posterior (MAP) [3] ap-
proach on a non-linear statistical model with a large data set can be solved using an L-BFGS [10]
algorithm. When dealing with an ever changing reality, the evaluation need to be fast to capture the
immediacy of the observations. This thesis will present the implementation of the problem objective
function and its gradient being used in the numerical iterative optimization algorithm. In order to
speed up the process of parameter estimation, an implementation is presented which utilizes the
massively parallel computation power of a graphics processing unit (GPU). The implementations
are done for both the CPU and the GPU, using C++ and NVIDIA’s programming platform CUDA.
Compared to the sequential CPU implementation, the result of the parallel GPU version is a speed
up of between 20 and 50 for the objective function and around 4 for the gradient.

Keywords: Statistical model, CUDA, GPGPU, Concurrent Programming
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1 INTRODUCTION

1 Introduction

1.1 Background

The company Admeta targets their product Admeta Whitebox Tango towards online publishers,
where each publisher owns several ad placements. These ad placements are then used by advertisers,
providing the publisher with ad materials which are displayed on the placements. An impression is
made when a visitor to one of these websites is shown a material, the visitor may then (if interested)
click on the material and even perform some type of action on the advertiser’s web page. The online
publishers get paid by the advertisers per thousand impressions (CPM), clicks (CPC) and/or actions
(CPA). To maximize the revenue, showing the right material to the right viewer is crucial in order
to increase the possibility for a click (and/or action). For each impression, the expected revenue
for each available material given a number of covariates (variables in a statistical model) is evaluated.

A statistical model is utilized to predict the number of subsequent clicks and the number of each
type of action. The expected revenue is formed by combining these numbers with the CPM, CPC
and CPA bids presented by the advertiser. Given that there are dozens of covariates and millions
of parameters where billions of observations are used in order to estimate the parameters, a lot of
computation time is needed. But sudden dynamics needs to be captured and new models needs to
be evaluated fast in order to give an accurate estimation in the right time-span.

1.2 Outline

The structure of the thesis is divided into to three main Sections: ’Problem Description’, ’Imple-
mentation’ and ’Results and Conclusion’.

The first Section, Problem Description, presents the problem and describes the domain of the
statistical model provided by Admeta being implemented.

The second Section, Implementation, contains both the CPU and the GPU implementation of
the statistical model described in Section one.

In the third Section, Results and Conclusion, the implementations are tested and evaluated. This
Section also presents the conclusion of the thesis.

Finally, appendix A describes the CUDA architecture as well as optimization techniques considered
when implementing the GPU version of the model.

1.3 Purpose

The purpose of this thesis is to explore the possible speed increase of implementing a parallel
GPU implementation of a statistical model supplied by Admeta. This model includes the objective
function (the logarithmic maximum a-posteriori function [3]) and its gradient, to be used in the
optimization algorithm L-BFGS [8]. The goal is to find the best way of implementing the function
and its gradient, taking advantage of the massive parallelization of the GPU. Aiming to increase
the execution speed with a factor of at least ten compared to a reference CPU implementation.

1



1.4 Scope 1 INTRODUCTION

1.4 Scope

The GPU implementation described in this thesis is using the NVIDIA Fermi architecture, with
CUDA C/C++ v4.1 as the programming language. The implementations are executed on a NVIDIA
GeForce GTX 570. The CPU version of the statistical model is implemented in C++ and both
versions will be developed in Microsoft Visual Studio 2010 under Windows 7.

The choice to use CUDA instead of other GPU programming frameworks such as OpenCL was
made by Admeta with the argument of better debug tools as well as C++ support.

The model is a simplified version of what Admeta uses and limited to only CPC actions (clicks).
However, the design of the implementation should provide future proof of adding other actions.
With the future intention of being able to fully execute an L-BFGS algorithm on the GPU, the
complete set observations should be able to fit in the device memory.

1.5 Related work

The research and use of general purpose computing using GPUs has been increasingly popular over
the recent years, mostly due to improved APIs and hardware support [17]. The speedup achieved
by GPU parallelization has been applied to many different application areas. The book GPU Com-
puting Gems [16] presents 50 articles written by researchers in ten different domains such as medical
imaging, ray tracing and rendering as well as scientific simulation. NVIDIA also features over 1000
applications in different research areas on their CUDA Zone website [18]. In the field of general
statistical modeling and data-intensive applications two articles was found. In Large-Scale Machine
Learning, Hwu describes a GPU implementation of a maximum entropy learning algorithm with a
large data set [16]. Suchard et al [15] provide an insight in statistical computation for large-scale
data analysis in structured Bayesian mixture models using GPUs.

Several optimization techniques for general CUDA implementations have been found and evaluated.

In the presentation Better Performance at Lower Occupancy [9], Vasily Volkov presents the idea
to hide memory latency using fewer threads. By using instruction level parallelism together with
thread level parallelism, Volkov shows that high throughput can be achieved even at lower occu-
pancy.

Techniques for higher instruction throughput are introduced by Wang in Fundamental Optimiza-
tions in CUDA [2]. Some of the techniques mentioned in the slides are reducing the number of
instructions by using templates and reducing divergence and bank conflicts. Wang also presents
some alternative instructions to replace expensive ones.

Several different approaches to parallel reduction are suggested in Optimizing Parallel Reduction
in CUDA [11], where Mark Harris discusses different optimizations techniques to speed up the
summarization of a large data set.
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2 PROBLEM DESCRIPTION

2 Problem Description

2.1 Core Technology

In order to maximize the revenue for the publisher, selecting the best material for each impression is
important. This is achieved by evaluating the expected revenue of all participating materials, given
a set of covariates of current interest. To calculate the expected revenue, a statistical model is used
to predict the number of subsequent clicks for each material. The expected revenue is the result of
combining the prediction with the CPC bids, given by the advertiser. The statistical model contains
several covariates and millions of parameters, which are estimated by tens of billions of observations.

When evaluating the expected revenue, it is important that the parameters are close to optimal.
Therefore, the estimation of said parameters must both be accurate and done fast to allow sudden
dynamics to be captured. To estimate the parameters, the iterative limited-memory quasi-Newton
optimization algorithm, L-BFGS [10] has been chosen. The algorithm and why it has been used, as
well as performance evaluation can be found in “Application of L-BFGS to a Large-Scale Poisson
MAP Estimation” [8]. The performance bottleneck of such an algorithm is the evaluation of the
objective function and its gradient (when the number of observations is extremely large). Since the
goal is to decrease the time taken per iteration, parallel implementations of the objective function
as well as its gradient will be done on the GPU. For comparison, the model will also be implemented
on the CPU.

2.2 The Statistical Model

Each impression a visitor makes when shown a material is stored as an observation. Each observation
contains covariates representing different effects such as which material was used and the placement
of the material. Along with the covariates, the observation also includes the number of clicks the
impression resulted in. To predict the number of clicks, a large set of collected observations is used
together with a set of parameters describing the contribution each covariate has for a click.

Covariate Parameters
(intercept) θlI

Advertiser θlDd
Impression frequency θlFf

Material θlMm
Order θlRr

Placement θlPp
Material & Placement θM :P

m ,θP :M
p

Table 1: The parameters describing the effect of the different covariates

For an observation, let the outcome (number of clicks) be denoted as Y , covariates as X and the
set of all parameters as θ. Then the expected number of clicks will be E[Y |θ, X], for convenience
denoted as µ.
A log-additive model is assumed for the mean:

3



2.2 The Statistical Model 2 PROBLEM DESCRIPTION

log(µ) = θlI + θlDd + θlFf + θlMm + θlRr + θlPp + θM :P
m · θP :M

p (1)

The outcome is assumed to be Poisson distributed:

f(Y = y|θ, X) =
(µ)ye−µ

y!

In order to prevent over fitting the model, regularization of the parameter estimates are required.
This is done by assuming prior distribution, which represents the uncertainty about the parameters
before the observations have been taken into consideration [3].

f(θ?) ∼ N (0, ψ?)

The hyperparameter, ψ, used as the variance of the normal distribution, is fixed and given for each
class, ?, of parameters (table 1).

ψ? ∈ (0,∞) (2)

To find the a-posterior density of the parameters, the probability density of the parameters given
the observations, Bayes theorem is used:

f(θ|X, Y ) =
f(Y |θ,X) · f(θ|X)

f(Y |θ)

Assuming f(θ) = f(θ|X), the proportionality with respect to θ:

f(θ|X, Y ) ∝ f(Y |θ,X) · f(θ)

To estimate the expectation of the outcome (number of clicks) for future impressions, the appro-
priate parameters must be found. This is achieved by finding the θ that maximizes the posterior
distribution. Thus the optimization problem is to find said θ.

By assuming conditional independence between the outcomes, given the parameters, the poste-
rior distribution can be expressed as:

f(Y |θ,X) · f(θ) =
∏

f(Y |θ,X) ·
∏

f(θ)

Since the maximization is not affected by using a logarithm approach, the products can be reduced
to sums. Thus the posterior distribution can be expressed as:∑

log(f(Y |θ,X)) +
∑

log(f(θ))

4



2.2 The Statistical Model 2 PROBLEM DESCRIPTION

Since the amount of observations that contains 0 clicks is significantly larger than the amount that
contains more than 0, importance sampling is used. The idea is that one observation can represent
a larger amount by adding a weight to it. The observations of the maximization problem looks like:
(Y i,Xi, wi), i ∈ 1, ..., N where wi denote the weight from the importance sampling. Each param-
eter index is denoted j ∈ 1, ...,θ for each class, ?, of parameters (table 1). Thus the log-posterior
density of the statistical model is expressed as:

N∑
i=1

wi · log(f(Yi|θ, Xi)) +
∑
?

θ∑
j=1

log(f(θ?j ))

2.2.1 The Objective Function

The objective function of the optimization problem, the log-posterior density, is divided into two
parts: the data part and the prior part further explained below.

Prior part The second part of the log-posterior density,
∑
?

∑θ
j=1 log(f(θ?j )), the prior part,

where f(θ?j ) is the normal distribution, thus log(f(θ?j )) = − log(2π)2 − log(ψ?)
2 − (θ?

j )
2

2ψ? .
This can be further expressed as:

log(f(θ?j )) =
∑
?

θ∑
j=1

− log(2π)

2
− log(ψ?)

2
−

(θ?j )
2

2ψ?
(3)

Data part The first part of the log-posterior density,
∑N
i=1 wi · log(f(Yi|θ, Xi)), the data part,

depends on the observations (the data) where log(f(Yi|θ, Xi)) = Yi · log(µ) − µ − log(Yi!) can be
expressed as:

log(f(Yi|θ, Xi)) =

N∑
i=1

wi · (Yi · log(µ)− µ− log(Yi!)) (4)

2.2.2 The Gradient

To perform the maximization, the gradient of the log posterior density with respect to θ is necessary
in order to use the L-BFGS algorithm [10].

Prior part
δlog(f(θ))

δθ?j
= −

θ?j
ψ?

(5)

5



2.2 The Statistical Model 2 PROBLEM DESCRIPTION

Data part
δlog(f(Yi = yi|θ, Xi))

δθ?j
=
δlog(µi)

δθ?j
· (yi − µi) (6)

For all simple effects (all but the material-placement matrix factorization effect):

δlog(µi)

δθ?j
=

{
1 , if x?i = j

0 , otherwise
(7)

where x?i is the index of the class ? of the covariate Xi.
For the material-placement matrix factorization effect, (for k ∈ 1, ..., |θM :P

m |):

δlog(µi)

δθM:P
mk

=

{
θP :M
xP
i k

, if xMi = m

0 , otherwise

δlog(µi)

δθP :M
pk

=

{
θM :P
xM
i k

, if xPi = p

0 , otherwise

(8)

where xMi is the index of the material class and xPi is the index of the placement class of the covariate
Xi.

6



3 IMPLEMENTATION

3 Implementation

When designing the model, the problem of storing different parameters of different effects in a simple
way became obvious. An approach to solving this is the use of a binary tree of effects represented by
templates. Two effects were implemented, IndexedEffects for simple effects and IndexedMatrix-

FactorizationEffects for the material-placement matrix factorization effect. These objects were
instantiated by using templates to represent each effect that should be taken into consideration.
Each instantiated effect were added together by ta binary operator class AddedEffects.

By using templates, the model could take any number of effects in any independent order. When
a method of the model is called, it will pattern match on the AddedEffects class, which will itera-
tively evaluate each effect in the tree.
The parameter values for each effect are stored within each instanced Effects class, one dimensional
vector for simple effects and two dimensional vectors for the material-placement effect.

3.1 Design

The model should be defined by which effects needed to be taken into consideration. It should also
be somewhat expandable for more and different effects not used within the scope of this thesis.
To fully satisfy the needs previously described, the implementation utilizes templates to describe
which effects the model should affect. This provides a type-safe approach as well as the ability
to perform some computations at compile time instead of at run time (also known as templated
metaprogramming) [6].

1 template <class TEffect>
2 class Model { . . . } ;

To add effects to the model, the class AddedEffects is used as a binary operator, combining
two effects by using partial template specialization [1]. To do this, each effect is represented by a
type. By using this strategy, any number of effects might be added in any order.

1 template <class TEffect1 , class TEffect2>
2 class AddedEffects { . . . } ;

Given that there are major differences in evaluating the one dimensional parameters of simple
effects compared to evaluating the two dimensional parameters of the matrix factorization effect,
two different classes are used: the IndexedEffect and the IndexedMatrixFactorizationEffect.
Both of these classes utilize templates for which kind of effect it should evaluate. The effect is
represented by Indexer classes, one for each effect, corresponding to the relevant index given by the
covariate.

7



3.1 Design 3 IMPLEMENTATION

1 class Mater ia l Indexer
2 {
3 public :
4 in l ine int GetIndex ( const Covar iates &cov ) const
5 {
6 return cov . GetMater ia l Id ( ) ;
7 }
8 } ;

For a syntactically cleaner representation, each effect is represented by its own class to instan-
tiate the correct IndexedEffect class with corresponding Indexer class.

1 class Mate r i a lE f f e c t : public IndexedEf fect<Mater ia l Indexer >{};
2
3 template<int N>
4 class Mater ia lP lacementEf f ect :
5 public IndexedMatr ixFactor i za t ionEf f ec t<Mater ia l Indexer , PlacementIndexer , N>{};

The IndexedEffect class does all the contributing mathematical computations for each instance
of each effect. The parameters for each model are represented by a ParameterVector class, one for
each effect. This class holds the one and two dimensional arrays representing the parameter values.
By using the ParameterVector class as an interface, the real data type can be changed without
modifying the whole structure of the model. For the matrix factorization effect, two innerParam-

eterVector classes are used to represent both matrices in that effect, the templated integer N is
the length of the second dimension.

1 template<class TIndexer>
2 class IndexedEf f ec t
3 {
4 public :
5 class ParameterVector { . . . } ;
6 . . .
7 } ;

1 template<class TIndexer1 , class TIndexer2 , int N >
2 class IndexedMatr ixFacto r i za t i onEf f e c t
3 {
4 public :
5 class ParameterVector { . . . } ;
6 class innerParameterVector { . . . } ;
7 . . .
8 } ;

Two methods were implemented for extracting the ParameterVector class from the model given an
observation sample. The first one was to get some starting parameters, either with a default value,
or randomized. The second method to gain a parameter vector filled with zeroes, for gradient cal-
culation purposes. The most important part of these methods is to make sure that the representing
array will be large enough to hold the largest index in the observation sample.

In the implementation of the Covariate class, each effect identification value is stored as a private

8



3.1 Design 3 IMPLEMENTATION

integer, and is retrieved from get methods. Since the only time the variables of the covariates need
to be modified is when created, no get methods are needed.

The ObservationSample class was implemented to represent the set of observations. Each ob-
servation within the class is represented by a Covariate object along with a value for clicks and a
value for weight.

Figure 1: The model and its effects

9



3.2 CPU implementation 3 IMPLEMENTATION

3.2 CPU implementation

To represent the parameter arrays, std::vector has been used instead of a raw heap-allocated
array, given that in most cases, the extra overhead incurred is insignificant [1].
In order to fully utilize the ParameterVector class in different algorithms, certain arithmetic oper-
ators have been overloaded. The operators that have been implemented are multiplication, addition
and subtraction, together with their assignment counterpart. Important to notice is that the multi-
plication operator is actually implemented as two versions, one for the scalar times vector product
and one for the dot product. Due to most operations of the ParameterVector class involved reading
from or writing to every position of the represented array, a general operation method was intro-
duced. This method would loop over all elements in the array, taking different custom operators as
arguments, along with single values and/or other parameter vectors.

1 template<typename Operator>
2 GeneralVectorOperat ion ( const ParameterVector &parameterVector ,
3 const double &value , Operator f )
4 {
5 for ( int i =0; i<s i z e ( ) ; i++)
6 f ( parameterResult [ i ] , parameterVector [ i ] , va lue ) ;
7 }

3.2.1 The Objective Function

Prior part The prior part described in equation 3 under Section 2.2 is completely independent of
the observation sample, and only affects the parameter values. Formula (9) loops over all parameter
values of all parameter classes. The first sum of all classes is done in the AddedEffect class, where
the second, of all parameters, is implemented in the IndexedEffect and IndexedMatrixFactor-

izationEffect class.

∑
?

M∑
j=1

− log(2π)

2
− log(ψ?)

2
−

(θ?j )
2

2ψ?
(9)

The sum over all parameter values are utilizing the general operation method introduced in Sec-
tion 3.2, together with a custom operator representing the inner calculations of the formula. The
operator is shown in the program listing below where a is representing the parameter value for a
particular index, and c represent the result.

1 struct pr i o r f unc
2 {
3 double p s i ;
4 p r i o r f unc (double ps i ) : p s i ( p s i ){} ;
5 void inl ine operator ( ) ( const double &a , double &c ) const
6 {
7 c += −( l og (2 . 0*PI ) /2 . 0 ) − ( l og ( p s i ) / 2 . 0 ) − ( a*a )/ ( 2 . 0* p s i ) ;
8 }
9 } ;

For performance enhancements, major parts of this formula can be pre-calculated, once for all

10



3.2 CPU implementation 3 IMPLEMENTATION

parameters ( log(2π)2 ), and once for each class ( log(ψ
?)

2 ).

Data part To calculate the data part of the objective function, each observation in the set of
observation samples needs to be taken into account. The formula is described in equation (4) under
Section 2.2 and can also be seen below (10).

N∑
i=1

wi · (Yi · log(µ)− elog(µ) − log(Yi!)) (10)

As described in Section 3.2, each observation in the observation sample contains a covariate, a
value for Y (clicks) and a value for w (weight). The formula is implemented as a loop over all
observations, where log(µ) (log of expected number of clicks) is evaluated in the effect classes. To
calculate the log of expected number of clicks, referring to the formula (1) in Section 2.2, is done
by sum up the contribution from each effects. For the IndexedEffect class, the contribution is
simply the parameter value given the index provided by the covariate. The contribution from the
IndexedMatrixFactorizationEffect class is a sum of all N parameter values represented by the
first covariate index multiplied with N parameter values represented by the second covariate index.

1 auto obse rvat ion = o ;
2 for ( int i =0; i<s i z e ( ) ; i++)
3 {
4 logExpVal = CalculateLogExpectedValue ( o [ i ] . getCov ( ) , parameters ) ;
5 weight = o [ i ] . getWeight ( ) ;
6 y = o [ i ] . getSuccessCount ( ) ;
7 r e s u l t += weight * ( y * logExpVal − exp ( logExpVal ) − logFac (y ) ) ;
8 }

The performance can be improved by storing constant results for log(Yi!), since in the scope of
this thesis Y ∈ 0, 1, 2, 3.

11
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3.2.2 The Gradient

The gradient calculation implemented does not return any value, instead it will modify the values of
an existing gradient vector. The initial gradient vector is just an instance of the ParameterVector

class with all elements set to zero. This method, also mentioned in Section 3.2, sets the maximum
array size for each array to the maximum identity of the covariates found in the observation sample.

Prior part For the prior part, a lot of similarities can be drawn to the implementation of the prior
part of the objective function. The equation (5) found in Section 2.2, is completely independent of
the set of observation samples. Instead the formula (11) is applied to all parameter values of the
model.

δlog(f(θ))

δθ?j
= −

θ?j
ψ?

(11)

The implementation take advantage of the previously mentioned general operation method (Section
3.2), applied with a custom operator seen implemented below. The operator set the value of gra-
dient representing a gradient vector value given an individual index, using the content parameter
representing a parameter vector value given the same index.

1 struct p r i o r g r ad i e n t c on t r i bu t i on
2 {
3 double p s i ;
4 p r i o r g r ad i e n t (double ps i ) : p s i ( p s i ){} ;
5 void inl ine operator ( ) (double &gradient , const double &parameter )
6 {
7 grad i ent = −parameter / p s i ;
8 }
9 } ;

Data part The calculations regarding the data part of the gradient calculations, equation (6)
under Section 2.2, can be seen as two parts. The first part is to gather (yi − µ) also known as
the prediction error, while the second part is to write the prediction error to the gradient vector.
Formula (12) is implemented in the model, looping over all observations in the set of observation
samples.

δlog(f(Yi = yi|θ, Xi))

δθ?j
=
δlog(µ)

δθ?j
· (yi − µi) (12)

For each observation, the prediction error is first calculated, and used as an argument for the final
gradient calculation, done in the effect classes. As seen in equation (7) and (8) under Section 2.2,
reintroduced below as (13) and (14), the derivative is calculated differently for simple effects com-
pared to matrix factorization effects.

δlog(µi)

δθ?j
=

{
1 , if x?i = j

0 , otherwise
(13)
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δlog(µi)

δθM:P
mk

=

{
θP :M
xP
i k

, if xMi = m

0 , otherwise

δlog(µi)

δθP :M
pk

=

{
θM :P
xM
i k

, if xPi = p

0 , otherwise

(14)

For the IndexedEffect class, the implementation is simply adding the prediction error to the gra-
dient vector given the covariate index. Given that the gradient vector is instantiated with zeroes,
there is no need to loop over all parameters in the effect, only the given indexes of the covariates
will be modified.

1 void AddGradientContribution(&covar i a t e s , p r ed i c t i onErro r , &parameters , &grad i ent )
2 {
3 int index = indexe r . GetIndex ( c ova r i a t e s ) ;
4 g rad i ent [ index ] += pred i c t i onEr ro r ;
5 }

The implementation in the IndexedMatrixFactorizationEffect class loops over N elements of
the two indexes provided by the covariates, adding the prediction error multiplied with the param-
eter value represented by the other index.

1 void AddGradientContribution(&covar i a t e s , p r ed i c t i onErro r , &parameters , &grad i ent )
2 {
3 int index1 = indexe r1 . GetIndex ( c ova r i a t e s ) ;
4 int index2 = indexe r2 . GetIndex ( c ova r i a t e s ) ;
5 for ( int i =0; i < N; i++)
6 {
7 grad i ent . getMatrix1 ( index1 ) [ i ] += parameters . getMatrix2 ( index2 ) [ i ]* pr ed i c t i onEr ro r ;
8 g rad i ent . getMatrix2 ( index2 ) [ i ] += parameters . getMatrix1 ( index1 ) [ i ]* pr ed i c t i onEr ro r ;
9 }

10 }
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3.3 GPU implementation

In order to add the GPU co-processor computability, some changes was made to the model. In or-
der be able to copy the data (parameters) from and to the device, the data type of the parameters
were changed from std::vector to native double []. With that change, the ParameterVector

class was given constructors, assign operators and the quite newly added (C++11) move semantics,
allowing the compiler to move ownership of the memory from one object to another, thus avoiding
redundant memory allocation and copying [6]. To allow the ParameterVector to be copied between
the device and the host, set and get methods was added for the pointers of the allocated parameter
arrays.

In order to be able to use the model from the GPU, the __device__ qualifier is required for
executing the methods [4]. For convenience, a device manageable version of the model was created
with this in mind, only having the necessary methods needed for computing the objective function
and gradient. When copying the parameters from the host to the device, memory is allocated on
the device where the parameters are transferred to. To reconstruct the ParameterVector class on
the device, each instance of the parameters is supplied with a pointer to the device memory where
the newly copied parameters are stored. When the device has made its gradient calculations, the
parameters are transferred back to the host.

3.3.1 Parallel reduction

A common sub problem of the GPU implementation, primarily apparent in the objective func-
tion calculation, is how to sum the result provided by each thread without sacrificing the parallel
strength. One solution that is applied here is what NVIDIA calls Parallel Reduction, a binary
tree-based approach for summarizing the content of an array. By letting each thread represent an
index of the array, every other thread will sum up its content with its neighbors, and then syn-
chronize between all threads before repeating the procedure. Mark Harris presents seven different
versions of this method in the presentation Optimizing Parallel Reduction in CUDA [11] each with
an incremental optimization. Because it uses a tree-like structure, 2D threads are required for a
complete binary tree, where the number of elements N ≤ 2D.
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3.3.2 Observation sample

To improve the memory access, the technique described in appendix A.3.2 are applied to the Ob-

servationSample class, redesigning it into a structure of arrays. This design allows the SIMT
architecture (see appendix A.2.1) of the multiprocessor to access multiple variables from the global
memory in a single transaction, making full use of the memory bandwidth. This is implemented by
removing the Covariate class and instead stores its content as separate arrays in a struct. When
all threads of a warp are accessing an element in the struct, the aligned elements of that array can
be transferred in up to 128-byte transactions [12].

1 struct ObservationSampleSoA{
2
3 struct Covar iate {
4 int mater ia lArray [N ] ;
5 int placementArray [N ] ;
6 int orderArray [N ] ;
7 int impres s ion f requencyArray [N ] ;
8 int adve r t i s e rAr ray [N ] ;
9 }

10
11 char successCount [N ] ;
12 short weight [N ] ;
13 int s i z e ;
14 } ;
15
16 ObservationSampleSoA obs ;

In order of improving L1 and L2 cache hits when accessing the parameters represented by the
covariates of the observation sample, sorting the observations could potentially improve the band-
width (see appendix A.2.6). The sorting is done on the CPU and in regard to the most frequently
used indexes.

3.3.3 The Objective Function

When summarizing the result from calculating the prior part and the data part of the objective
function, two distinct versions of the parallel reduction technique (Section 3.3.1) was considered.
The first method was to let each thread in a thread block store its contribution in the shared
memory. When all threads have done their calculations, they will synchronize and start reducing
the result. The advantages with this approach is that it require less global memory and less global
memory access, due to each thread block only storing their summarized result once. The drawbacks
are that the number of threads that are required for running the calculations need to be 2D, making
occupancy optimizations more difficult.

The second method was to let each thread store its result in global memory and separating the
reduction from the actual computations. This would result in one extra kernel launch (see appendix
A.1.1) but the requirement of 2D threads are no longer needed. Of course the disadvantage of this
approach is the need for more global memory and more global memory access, as well as the extra
overhead from launching an extra kernel. The results from both of these methods still require at
least one more summarization, supposing more than one block was launched.

Since the second method requires a lot more global memory than the first one, and one of the
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limitations with this thesis is that all observations need to be able to fit in the global memory, the
first method was chosen to be implemented.

1 g l o b a l void Reduction (double * t emp re su l t )
2 {
3 double * sdata = SharedMemory ( ) ;
4 unsigned int t i d = threadIdx . x ;
5 unsigned int i = blockIdx . x*blockDim . x + threadIdx . x ;
6 sdata [ threadIdx . x ] = temp resu l t [ i ] ;
7 sync th r ead s ( ) ;
8 for ( int s = blockDim . x /2 ; s>0; s /=2)
9 {

10 i f ( t i d < s )
11 {
12 sdata [ t i d ] += sdata [ t i d + s ] ;
13 }
14 sync th r ead s ( ) ;
15 }
16 i f ( t i d == 0)
17 temp resu l t [ b lockIdx . x ] = sdata [ 0 ] ;
18 }

Prior part The parallelization of the prior part is achieved by removing the general operation
method introduced in Section 3.2 and instead letting each thread ID represent the parameter index.
Every thread will calculate the contribution from the index for each effect, summarize it and store

it in shared memory. Each thread is performing the calculation, − log(2π)2 − log(ψ)
2 − (θ)2

2ψ , for each
parameter value represented by each effect. As mentioned as a performance enhancement in Section
3.2.1, the advantages with pre-calculation of certain parts has been implemented here. Only two
variables are used in the calculations, ψ and the parameter value θ, in which ψ at most differ once
per effect and can therefore be stored in the fast access constant memory (see Section A.2.5). By

reducing the constant values of these calculations to c1 = − log(2π)2 , c2 = − log(ψ)2 , and c3 = − 1
2ψ ,

the arithmetic operations performed for each parameter value are c1 + c2 + θ2 · c3.

1 d e v i c e in l ine double PriorFunct ion ( ) const
2 {
3 auto value = va l u e s [ threadIdx . x ] ;
4 return ( c1 + c2 − value * value * c3 ) ;
5 }

Data part In the implementation of the data part of the objective function, each observation is
represented by a thread. No major changes were required for the effect classes given that calculat-
ing log(µ) is sequential performed by each thread, instead the for-loop of the model where all the
observations were iterated through has been removed.
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1 d e v i c e const inl ine double CalcDataPart ( observationSample , parameters )
2 {
3 index = threadId . x ;
4 logExpVal = CalcLogExpVal ( observat ionSample . getCov ( ) , parameters ) ;
5 y = observat ionSample . getSuccessCount ( index ) ;
6 weight = observat ionSample . getWeight ( index ) ;
7 return (w * ( y * logExpVal − exp ( logExpVal ) ) − l o gFa c t o r i a l ( y ) ) ;
8 }

When the expected number of clicks is evaluated, the rest of the formula w · (Y · log(µ)− elog(µ) −
log(Y !)) is calculated. As mentioned in data part of Section 3.2.1, the performance can be increased
by pre-calculating the values for log(Y !) by the fact that Y ∈ 0, 1, 2, 3. This was implemented by
using a switch method matching on the value of Y , return constant results for any of the eligible
values.

3.3.4 The Gradient

The gradient is calculated in the same way as the CPU implementation in the sense that an instance
of the ParameterVector class filled with zeroes is modified in the positions given by the covariates.
The class is created and filled with zeroes on the CPU, and then the arrays representing the
parameters are copied to the GPU, where the calculations are done.

Prior part The implementation of the prior part of the gradient calculation is accomplished by
removing the general operator method described in Section 3.2 as well as the custom operator
performing the calculation. Instead, each parameter index is represented by a thread ID and one

calculation is performed sequentially per effect. The gradient calculation, δlog(f(θ))
δθ = − θ

ψ , given

that c = − 1
ψ can be pre-calculated and stored in the fast access constant memory, reduced to

θ
′

= θ · c.

1 d e v i c e in l ine void PriorGradient ( parameters )
2 {
3 grad i ent [ threadId . x ] = parameters [ threadId . x ] * ps i m inus d iv ;
4 }

Data part - näıve version Just like in the CPU implementation (Section 3.2), the data part
is divided into two major blocks, calculating the prediction error, and writing it to the gradient
vector. Each thread represents one observation in the set of observation samples. The prediction
error, y − elog(µ), is calculated once per thread, where the log(µ) contribution is using the same
implementation described in the data part of Section 3.3.3. The second part, adding the prediction
error to the gradient vector, is very similarly implemented as the CPU version. The difference
is that since indexes could be the same, writing to the same location in global memory leads to
undefined results. To counter this, the use of atomic addition has been applied in the form of the
atomicAdd method, guaranteeing that both results will be correctly added to the memory location.
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1 d e v i c e const inl ine void CalcDataGradPart ( observationSample , parameters , g rad i ent )
2 {
3 cov = observat ionSample . getCov ( ) ;
4 expVal = exp (CalcLogExpVal ( cov ) , parameters ) ) ;
5 y = observat ionSample . getSuccessCount ( threadId . x ) ;
6 weight = observat ionSample . getWeight ( threadId . x )
7 p r ed i c t i onEr ro r = (y − expVal )*weight ;
8 e f f e c t . AddGradientContribution ( cov , p red i c t i onErro r , parameters , g rad i ent ) ;
9 }

1 d e v i c e in l ine void AddGradientContribution(&cov , p red i c t i onErro r ,
2 &parameters , &grad i ent )
3 {
4 atomicAdd(&parameterGradient [ i ndexe r . GetIndex ( cov ) ] , p r ed i c t i onEr ro r ) ;
5 }

The major setback with this implementation is that the intercept effect (θlI) is implemented as
a vector of only one element. This results in that every thread must write atomically to the same
global memory location, essentially performing the complete implementation sequential. To adjust
this, the fact that the intercept effect basically is a sum of all prediction errors can be exploited.
By removing the intercept from the model and storing the prediction error in shared memory, the
intercept effect can fully utilize the reduction technique described in Section 3.3.1. The advantage
of this implementation is the elimination of atomic operations when calculating the gradient of the
intercept effect, increasing performance and parallelism. The drawbacks however is that the cost
of using the parallel reduction is applied, as well as the cost of launching sequential kernels when
dealing with a large amount of threads.

1 d e v i c e const inl ine void CalcDataGradPart ( observationSample , parameters , g rad i ent )
2 {
3 cov = observat ionSample . getCov ( ) ;
4 expVal = exp (CalcLogExpVal ( cov ) , parameters ) ) ;
5 y = observat ionSample . getSuccessCount ( threadId . x ) ;
6 weight = observat ionSample . getWeight ( threadId . x )
7 sharedMemory [ threadIdx . x ] = (y − expVal )*weight ;
8 sync th r ead s ( ) ;
9 e f f e c t . AddGradientContribution ( cov , parameters , g rad i ent ) ;

10 }
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Data part - improved version To further reduce the amount of atomic operations. A strategy
is to sum up all the parameters of a block in the shared memory, before writing it to the global
memory. An approach to this is to let each thread of a block represent one index for each effect.
Then loop over the block size, and sum up the contribution each time that index is found. When
done, the result is written atomically to the global memory. This method allows for a minimum
of 25 atomic operations per block instead of a static 25 per thread, but at the cost of sequentially
looping over each effect.

1 d e v i c e in l ine void AddGradientContribution(&cov , p red i c t i onErro r ,
2 &parameters , &grad i ent )
3 {
4 s h a r e d indexes [ blockDim ] ;
5 index = indexes [ threadIdx . x ]
6 r e s u l t = 0 . 0 ;
7 mem = 0 ;
8 f i r s t = 0 ;
9 for ( i < blockDim . x )

10 {
11 i f ( indexes [ i ] == index )
12 {
13 i f (mem == 0)
14 {
15 mem++;
16 f i r s t = i ;
17 }
18 r e s u l t += pred i c t i onEr ro r [ i ] ;
19 }
20 }
21 i f ( f i r s t == threadIdx . x )
22 atomicAdd(&parameterGradient [ index ] , r e s u l t )
23 }
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4 Results and Conclusion

A set of benchmarks have been used to compare the GPU implementation to the CPU implemen-
tation as well as the impacts of the optimizations and the changes described in Section 3.3.

The system configuration used to execute the implementations is presented in table 2.

CPU Intel Core i7-3930K
RAM 8x4GB DDR3 1600 MHz

Hard Drive Corsair Force 3 SSD 120GB
Operating System Microsoft Windows 7 Professional 64-bit

IDE Microsoft Visual Studio 2010 v 10.0.30319.1
GPU NVIDIA GeForce GTX 570 1280 MB GDDR5

GPU Driver NVIDIA GeForce Driver v296.10
GPU SDK NVIDIA CUDA Toolkit v4.1 64-bit

Table 2: The system used for evaluating the performance of the implementations

To capture the time taken for the CPU implementation to execute, the clock() method found
in the <ctime> library is used to return the number of clock ticks elapsed since the program was
launched [13]. To measure the time, two calls to the clock() method are done, one before the
execution and one after. The resulting processing time for the implementation is the difference
between these calls. When measuring the GPU implementation, execution time from NVIDIA
NSight as well as the CUDA events is used [4]. With future intentions to execute the complete
L-BFGS algorithm on the GPU, storing all the data in global memory, the time captured will only
be measured for the execution of the computation and not the time taken to transfer the parameters
or the observations to and from the global memory. Each benchmark was executed ten times and
an average was calculated. The benchmark will contain the time for the execution (ms) as well as
number of observations per millisecond (obs/ms).
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4.1 The Test Data

Two sets of test data are used to evaluate the performance of the implementations. One with real
test data used by Admeta, and one simulated. The simulated data is created from randomizing
covariates uniformly, followed by randomizing parameter values according to prior distribution [3].
For each covariate, µ is calculated from the parameter values. Since the distribution for clicks is
completely defined given µ, this is used to simulate the number of clicks for each covariate. To
provide the same test suit for different implementations, the random value will be generated from
a static seed, providing the same result for each test. The major difference between the two sets
of test data is the fact that in the real data supplied by Admeta, the covariate indexes are not
uniformly distributed. For example, only a limited amount of material and placement combinations
exist.

Test Data Observations Parameter Indexes Active Parameter Indexes
Real Data 13 619 739 1 482 799 32 587

Simulated Data 33 554 432 125 000 125 000

Table 3: The configurations of the test data

In the scope of this thesis and previously described, the number of observations should be able to
fit in the device memory due to the future intention of executing the complete L-BFGS algorithm
on the GPU. The graphics card that is used in this test (table 2) has 1280 MB device memory. To

fully utilize the implementation, a set of 2
N

observations is used for the simulated data to reduce
branch divergence [4]. Denoting s as the size of an observation in bytes, d as the device memory in
Megabytes (MB) the following formula can be used to calculate the maximum size of the observation
sample.

blog2(
220

s
· d)c

With an observation size of 23 bytes, 225 = 33554432 observations can be used at the size of 734
MB. Important to notice is that at least two sets of parameters also needs to fit in the device mem-
ory. The size of the parameters is however significantly smaller than that of the set of observations.
When using double precision floating units (8 byte) one million parameters only have the size of
8·106
220 = 7.63MB.

The real data contains several parameter values that are no longer used, for example materials
that have been removed, and don’t have an index in the covariates. The negative impact with this
is that the parameter values that are no longer active still needs to be allocated and evaluated,
wasting computation and memory. However, the simulated data only contains active parameter
values.

The model tested contains all the implemented effects holding the ψ value of 0.05 (see eq 2 in
Section 2.2).
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4.2 The CPU implementation

The CPU implementation of the statistical model (Section 3.2) is used as a reference to measure
the possible speedups provided by the GPU implementation. The implementation is quite näıve
and there is without doubt possibilities of improvement. CPU optimization is however outside of
the scope of this thesis. The benchmark is presented in table 4.

Test Data Floating Point Format Objective Function Gradient
(ms) (obs/ms) (ms) (obs/ms)

Real Data Double Precision 478 28 493 999 13 633
Single Precision 384 35 468 840 16 213

Simulated Data Double Precision 1 584 21 183 2 676 12 539
Single Precision 1 322 25 382 2 283 14 698

Table 4: The result of the benchmark running the model on the CPU

4.3 The GPU implementation of the objective function

4.3.1 Occupancy

The first step in running the GPU implementation of the objective function is to decide the block
and grid size. To maximize the occupancy mentioned in appendix A.3.1, the NVIDIA Occupancy
Calculator [14] was used to find the most effective configuration given the number of registers and
the number of threads per block (the size of the shared memory is also a matter, but not a limitation
in the objective function implementations). The number of registers currently in use was extracted
by using NVIDIA’s Visual Profiler and NSight. Important to mention is that there is no guarantee
that higher occupancy results in higher performance, specifically if there is no latency or bandwidth
limitation [14].

Sum Reduction The sum reduction kernel is used by both GPU implementations to sum up vec-
tors containing double or single precision elements. The implementation (see Section 3.3.1) sums up
all elements in a block and stores it in global memory given a block size of 2N . From profiling, using
single precision results in 8 registers compared to 10 for double precision. Since the register usage
is well under the limit of 20 (See appendix A.2.5) 100% occupancy can be achieved. The block sizes
resulting in highest theoretical occupancy, calculated using NVIDIA Occupancy Calculator [14], is
using 256 or 512 threads per block. However, given the nature of the reduction technique, this does
not scale very well with grid sizes of one. This is due to the fact that half of the threads halts for
every iteration, and when there is only one block for the warp scheduler to handle, some Streaming
Multiprocessors will idle (see appendix A.3.1). To be able to assign an appropriate grid and block
size to the sum reduction kernel, a benchmark was done to evaluate the execution time for a set of
applicable sizes. The test involves summing up an array of double precision values (with the same
size as the number of threads) measured with NVIDIA NSight profiling. Table 5 includes the grid
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configurations with fastest execution speed given the array size.

Array Size Dimensions Execution Time (ms)
220 1024× 1024 0.3300
219 1024× 512 0.1230
218 1024× 256 0.0590
217 512× 256 0.0330
216 256× 256 0.0200
215 256× 128 0.0140
214 64× 256 0.0101
213 64× 128 0.0078
212 64× 64 0.0071
211 64× 32 0.0068
210 1× 1024 0.0065
29 1× 512 0.0044
28 1× 256 0.0040
27 1× 128 0.0037
26 1× 64 0.0034
25 1× 32 0.0033

Table 5: The fastest grid dimensions given the array size and the sum reduction test data

Prior Part The block (and grid size) of the prior part is calculated from the number of threads
that needs to be executed, namely the number of parameter values, at least 125000 for the simulated
data, and at least 1482799 for the real data (see table 3). By the design of the implementation, the
number of threads to be launched must also be a power of two greater or equal to the number of
parameter values, resulting in 217 for simulated data and 221 for the real data. The implementation
is designed with support of one dimensional block sizes and two dimensional grid sizes where the
calculations are first done on the block followed by a kernel call for each grid dimension to be
reduced (see Section 3.3.1 and Section 3.3.3). Using the Occupancy Calculator [14] with double
precision, the power of two configurations for the block size that gave highest theoretical occupancy
(83%) was using 256 threads per block. The benchmark used a CUDA event to record the time of
the execution of the calculation followed by the reduction. Since only the prior part is tested in
this Section, the grid and block size of the data part is fixed.

The result for testing different grid and block sizes for the prior part is presented in table 6.
By using the following formula, 2M−B , where 2M is the number of parameter values and 2B is the
desired block size of the prior kernel. The grid size is determined by looking up the result from the
formula in table 5 .

Data Part The data part of the objective function need to launch more threads than the prior part
due to one thread representing one observation. The simulated data was choose to be a power of two
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Test Data Grid Size Block Size Occupancy Time (ms)

Real Data 64× 256 128 67% 0.66
64× 128 256 83% 0.75
64× 64 512 67% 0.79
64× 32 1024 67% 0.92

Simulated Data 1× 1024 128 67% 0.28
1× 512 256 83% 0.29
1× 256 512 67% 0.26
1× 128 1024 67% 0.29

Table 6: The benchmark of the prior part of the objective function

thus requires 225 threads to launch. The real data requires 2N threads, whereN = dlog2(13619739)e,
resulting in 224threads. The number of registers used by the data part resulted in 26, when using
NVIDIA’s Visual Profiler and NSight. When using the NVIDIA Occupancy calculator [14] for all
power of two block sizes results in the same theoretical occupancy of 67% , due to the high register
usage. The result of the benchmark with different block sizes is presented in table 7, the grid size
is determined the same way as in the prior part.

Test Data Grid Size Block Size Occupancy Time Throughput
ms obs/s

Real Data 512× 256 128 67% 70 193 875
256× 256 256 67% 67 204 562
256× 128 512 67% 61 223 751
64× 256 1024 67% 62 219 284

Simulated Data 1024× 256 128 67% 409 81 968
512× 256 256 67% 405 82 769
256× 256 512 67% 401 83 621
256× 128 1024 67% 400 83 957

Table 7: The benchmark of the data part of the objective function

Conclusion The result shows that there is no huge difference in the execution time in either the
prior part or the data part from changing the block size. The occupancy is not represented by the
performance for these implementations mainly due to the fact that there is no major latency or
bandwidth limitation. As with any optimization, experimentation is advised, and should be tested
continuously when adding new optimizations [14].
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4.3.2 Cache Optimization

Accessing the parameter values from global memory provides latency up to 400− 800 clock cycles
(see appendix A.3.1), this has a large negative impact on the overall throughput of the implemen-
tation. To improve upon this, utilizing the L1 and L2 cache described in appendix A.2.6 can reduce
the need for global memory access. When L1 caching is activated all global memory access are
cached [2], to maximize the usage of this, parameter values accessed frequently should be stored
close to each other. The design of the access of the parameter values depends on the indexes rep-
resented by the covariates, thus, sorting the covariate indexes on the CPU before calling the GPU
implementation should improve the L1 cache hits. The sorting is with respect to the material index
followed by the placement index since they are most frequently used given that they also appear in
the matrix factorization effect. The test is done with the fastest grid and block configurations from
Section 4.3.1.

The results presented in table 8 involve using activated and disabled L1 cache as well as shuf-
fled and sorted covariates. The cache hit is measured using NVIDIA NSight.

Test Data L1 Cache Covariates L1 Cache Hit L2 Cache Hit Time Throughput
(ms) (obs/ms)

Real Data Disabled Shuffled 0% 96% 70 194 568
(256× 128)× 512 Disabled Sorted 0% 70% 16 851 234

Enabled Shuffled 58% 98% 62 219 673
Enabled Sorted 88% 17% 12 1 134 978

Simulated Data Disabled Shuffled 0% 70% 289 116 105
(256× 256)× 512 Disabled Sorted 0% 88% 83 404 270

Enabled Shuffled 9% 66% 430 78 034
Enabled Sorted 27% 95% 111 302 292

Table 8: The benchmark of the cache optimization of the objective function

Conclusion As presented in appendix A.3.2 using L1 cache when having scattered memory lo-
cations can reduced the performance. This can be seen in the benchmark of the simulated data
where the execution time increased with 50% by activating the L1 cache. However, in the real
data test, that is not the case. The execution time is actually improved by using the cache, but as
presented, the cache hit is also significantly better in the real data versus the simulated data. When
benchmarking with sorted data, the use of L1 cache improved the execution time for the real data,
but not for the simulated data. The conclusion that can be drawn from the benchmark is that L1
cache should be disabled when cache hits are low (lower than 58% from this benchmark).
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4.3.3 Single Precision

The model has been designed with double precision floating point units to represent parameter
values. Loosing accuracy, single precision floating point would provide higher throughput given
that, compared to the double precision, uses half the space as well as arithmetic instructions uses
less clock cycles (see appendix A.3.3). Using single precision instruction also provide the use of
dual dispatch in the warp scheduler (see appendix A.2.4) as well as less register usage (see appendix
A.2.5). To compare the double and single precision floating unit, a modified version of the model
is implemented utilizing single precision floating point functions described in [2, 4].

The results presented in table 9 only compares the time of the execution, not the accuracy of
the result.

Test Data L1 Cache Covariates Single precision Double precision
Time Throughput Time Throughput
(ms) (obs/ms) (ms) (obs/ms)

Real Data Disabled Shuffled 49 277 954 70 194 568
(256× 128)× 512 Disabled Sorted 9 1 513 304 16 851 234

Enabled Shuffled 51 267 053 62 219 673
Enabled Sorted 7 1 945 677 12 1 134 978

Simulated Data Disabled Shuffled 185 181 375 289 116 105
(256× 256)× 512 Disabled Sorted 50 671 089 83 404 270

Enabled Shuffled 373 89 958 430 78 034
Enabled Sorted 62 541 200 111 302 292

Table 9: The benchmark of the objective function using single precision

Conclusion While the result will not be as accurate as when double precision is used, the bench-
mark shows that execution time is reduced up to around a factor of 2 by switching to single precision
floating point units.
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4.4 The GPU implementation of the gradient

4.4.1 Occupancy

Just as in Section 4.3.1, NVIDIA Occupancy Calculator [14] was used to find the most effective
grid and block size configuration of the gradient.

Prior Part The number of threads that needs to be executed for the prior part of the gradient is
the same as for the prior part of the objective function (Section 4.3.1), 217 for the simulated data
and 221 for the real data. NVIDIA Visual Profiler and NSight show that the prior part only uses
12 registers per thread. The result is that block sizes of 256 and 512 provide occupancy of 100%
[14]. Each configuration is tested together with the corresponding grid size calculated from 2M−B ,
where 2M is the number of parameter values and 2B is the desired block size of the prior kernel.
The grid size is determined by looking up the result from the formula in table 5 . The result from
the benchmark is presented in table 10.

Test Data Grid Size Block Size Occupancy Time (ms)

Real Data 64× 256 128 67% 0.299
64× 128 256 100% 0.306
64× 64 512 100% 0.297
64× 32 1024 67% 0.319

Simulated Data 1× 1024 128 67% 0.070
1× 512 256 100% 0.067
1× 256 512 100% 0.074
1× 128 1024 67% 0.066

Table 10: The benchmark of the prior part of the gradient

Data Part As presented in Section 3.3.4, two versions of the data part of the GPU implemen-
tation have been implemented. The number of threads required for the implementations is just as
many as the data part of the objective function, namely 225 for the simulated test data and 224

for the real test data. The näıve implementation uses 35 registers per thread while the improved
version uses as many as 61. Since the improved version uses

blockSize · (nrOfSimpleEffects-1 · sizeof(unsigned int) + sizeof(double))

bytes of shared data per block, the occupancy will be significantly lower. Just as in the prior
part, the grid size is taken from table 5. The results from the näıve implementation is presented in
table 11 while the results from the improved implementation is presented in table 12.
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Test Data Grid Size Block Size Occupancy Time Throughput
(ms) (obs/ms)

Real Data 512× 256 128 58% 31 848 428
256× 256 256 50% 32 627 417
256× 128 512 33% 24 082 566

Simulated Data 1024× 256 128 58% 2 349 14 285
512× 256 256 50% 2 309 14 532
256× 256 512 33% 2 150 15 607

Table 11: The benchmark of the data part of the näıve gradient implementation

Test Data Grid Size Block Size Occupancy Time Throughput
(ms) (obs/ms)

Real Data 1024× 512 32 17% 2 434 5 596
1024× 256 64 33% 1 797 7 579
512× 256 128 33% 2 147 6 344
256× 256 256 33% 3 606 3 777
256× 128 512 33% 6 713 2 029

Simulated Data 1024× 1024 32 17% 3 109 10 793
1024× 512 64 33% 4 596 4 596
1024× 256 128 33% 4 410 7 609
512× 256 256 33% 3 938 8 521
256× 256 512 33% 4 501 7 455

Table 12: The benchmark of the data part of the improved gradient implementation

Conclusion As presented, the occupancy of either version does not seem to have any correlation
with the execution time. Just as mentioned in the conclusion part of Section 4.3.1, when no major
latency or bandwidth limitation is present, occupancy has little effect. The results also hint of the
distribution of the data between the real and the simulated tests. The näıve implementation is
limited by the atomic additions, if several parameter values need to be written at the same time,
the global memory writes will be serialized.
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4.4.2 Cache Optimization

As described in appendix A.3.1 accessing parameter values from global memory is an expensive
operation given the number of clock cycles required. Just like in Section 4.3.2, the two versions
of the gradient implementation is tested with sorted and shuffled covariates, along with activated
and disabled L1 cache. The result of the näıve implementation of the gradient is presented in table
13. For the improved gradient implementation, results are presented in table 14. The benchmarks
have been done with the fastest grid and block configurations from table 11 and 12. The improved
version is tested with block size of both 32 and 64 for real data.

Test Data L1 Cache Covariates L1 Cache Hit L2 Cache Hit Time Throughput
(ms) (obs/ms)

Real Data Disabled Shuffled 0% 30% 23 908 570
(256× 128)× 512 Disabled Sorted 0% 10% 160 966 85

Enabled Shuffled 49% 41% 24 098 565
Enabled Sorted 76% 11% 161 424 84

Simulated Data Disabled Shuffled 0% 18% 2 196 15 280
(512× 256)× 256 Disabled Sorted 0% 10% 104 694 321

Enabled Shuffled 7% 31% 2 309 14 532
Enabled Sorted 33% 14% 104 421 321

Table 13: The benchmark of the cache optimization of the näıve gradient implementation

Test Data L1 Cache Covariates L1 Cache Hit L2 Cache Hit Time Throughput
(ms) (obs/ms)

Real Data Disabled Shuffled 0% 44% 1 661 8 200
(1024× 256)× 64 Disabled Sorted 0% 20% 1 166 11 681

Enabled Shuffled 42% 56% 1 814 7 508
Enabled Sorted 49% 6% 1 085 12 553

Real Data Disabled Shuffled 0% 57% 2 339 5 823
(1024× 512)× 32 Disabled Sorted 0% 25% 858 15 874

Enabled Shuffled 60% 63% 2 435 5 593
Enabled Sorted 58% 13% 519 26 242

Simulated Data Disabled Shuffled 0% 39% 3 370 9 957
(1024× 1024)× 32 Disabled Sorted 0% 41% 2 419 13 871

Enabled Shuffled 25% 44% 3 110 10 789
Enabled Sorted 45% 42% 1 716 19 554

Table 14: The benchmark of the cache optimization of the improved gradient implementation
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Conclusion As seen in table 13, sorting the covariates have significantly negative effect on the
execution time. The reason is that when the indexes are sorted, the same location in global memory
needs to be written to atomically, serializing the process. Using the L1 cache has little to no effect
on the execution time for the näıve implementation. The improved version however benefits from
the coalesced memory reads provided by sorting the covariates.
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4.4.3 Single Precision

The test of replacing double precision to single precision is performed the same way as in Section
4.3.3. The results from the näıve implementation is presented in table 15 and the improved imple-
mentation is presented in table 16, only time is measured, not accuracy.

Test Data L1 Cache Covariates Single precision Double precision
Time Throughput Time Throughput
(ms) (obs/ms) (ms) (obs/ms)

Real Data Disabled Shuffled 1315 10 357 23 908 570
(256× 128)× 512 Disabled Sorted 994 13 702 160 966 85

Enabled Shuffled 1342 10 149 24 098 565
Enabled Sorted 994 13 702 161 424 84

Simulated Data Disabled Shuffled 1441 23 286 2 196 15 280
(512× 256)× 256 Disabled Sorted 2008 16 710 104 694 321

Enabled Shuffled 1337 25 097 2 309 14 532
Enabled Sorted 2002 16 760 104 421 321

Table 15: The benchmark of the näıve gradient implementation using single precision
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Test Data L1 Cache Covariates Single precision Double precision
Time Throughput Time Throughput
(ms) (obs/ms) (ms) (obs/ms)

Real Data Disabled Shuffled 854 15 948 2 339 5 823
(1024× 512)× 32 Disabled Sorted 301 45 248 858 15 874

Enabled Shuffled 860 15 837 2 435 5 593
Enabled Sorted 199 68 441 519 26 242

Real Data Disabled Shuffled 620 21 967 1661 8 200
(1024× 256)× 64 Disabled Sorted 360 37 833 1166 11 681

Enabled Shuffled 576 23 645 1814 7 508
Enabled Sorted 228 59 736 1085 12 553

Simulated Data Disabled Shuffled 1 910 17 568 3 370 9 957
(1024× 1024)× 32 Disabled Sorted 809 41 476 2 419 13 871

Enabled Shuffled 1586 21 157 3 110 10 789
Enabled Sorted 670 50 081 1 716 19 554

Simulated Data Disabled Shuffled 1560 21 509 4264 7 869
(1024× 512)× 64 Disabled Sorted 657 51 072 3206 10 466

Enabled Shuffled 1596 21 024 4612 7 275
Enabled Sorted 577 58 153 3039 11 041

Table 16: The benchmark of the improved gradient implementation using single precision

Conclusion The use of single precision instead of double precision floating point unit had a sig-
nificant effect of the näıve implementation. One explanation to this could be that since there is no
built in atomic addition method for double precision floating point units, a special implementation
was required to split the data into two parts that needs to be written one after another locking up
resources. For floating point units however, atomic operations are supplied in the CUDA language.
Using single precision also had a positive effect on the improved implementation.
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4.5 Summary of results

The results show that in all cases, using single precision over double precision reduces the execu-
tion time. The same applies to sorting the covariates before computations. Having the L1 cache
enabled for sorted data seems to improve the performance for the gradient. However, the objective
function seems to be better off having it disabled. The figures below shows the speedup of the GPU
implementation compared to the CPU implementation plotted on a logarithmic scale, where 1 is
the speed of the reference CPU implementation. Figure 2 shows the speedup of the real data while
Figure 3 shows the speedup of the simulated data.

Figure 2: Graph of Real Data
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Figure 3: Graph of Simulated Data
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To get a sense of the combined results from both the objective function and the gradient, Fig 4
shows the speedup of using both the implementations iteratively compared to the CPU implemen-
tation.

Figure 4: Graph of Combined Results
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4.6 Conclusion

In this thesis, an efficient implementation of the corresponding log posterior density and gradient
for a non-linear statistical model with a large data set has been presented. With the intention of
speeding up the execution time, the implementation was done using NVIDIA’s computing architec-
ture CUDA, taking advantage of the massively parallel computation power of a GPU. A sequential
implementation was also done for the CPU to use as a reference to measure the difference in run time.

To optimize the GPU implementation, three different techniques was applied. The first one, uti-
lization optimization (see appendix A.3.1), was applied by testing different grid and block sizes in
order to maximize the efficiency of the kernels. The result of this optimization gave a speedup of at
most around 8 times for the objective function and 1.1 times for the gradient compared to the CPU
implementation. The second technique was the optimization of memory throughput (see appendix
A.3.2). With the intention of reducing the number of global memory accesses, sorting the data
to coalescing memory reads, as well as utilize the L1 cache was tested. The second optimization
technique gave a total speedup of at most around 39 times for the objective function and 2 times for
the gradient compared to the CPU implementation. The last technique that was applied was the
use of single precision floating point units instead of double precision in order to improve instruc-
tion throughput as well as memory throughput (see appendix A.3.3). This was carried out by not
only changing the type but also using faster arithmetic instructions adjusted for single precision.
Applying the last optimization technique resulted in a total speedup of at most around 52 times
for the objective function and 4 times for the gradient compared to the CPU implementation.

While aiming for a speed up of at least a factor 10 compared to the reference implementation,
the parallelization of the objective function and the gradient resulted in different performance in-
crease. The objective function successively manage to perform the evaluation between 20 and 50
times faster than the sequential reference, however, the gradient only gained a speed up of around
4 times faster than the reference.

4.7 Future Work

Even though the objective function did result in a fairly good speedup, there is still room for im-
provement, such as improved access pattern and more (or less) instruction level parallelism [9]. The
major obstacle however is the gradient calculation, having a very low performance boost compared
to the objective function.

The main obstacle with the gradient calculation is the heavy use of atomic operations, reduc-
ing the parallelism and increasing the time taken to execute. In order to keep the use of atomic
operations to a minimum, the use of shared memory to hold a temporary gradient could be a good
approach. This could be implemented by using a look-up table and splitting the parameters into
smaller pieces, able to fit into the size-limited shared memory. When the contributing calculations
are done, the temporary gradient is written atomically to the global memory.

Aside from improving the function and gradient, the next step of this project would be to im-
plement the complete L-BFGS [8] algorithm on the GPU. This would include parallelization of
parameter addition, subtraction, dot product and scalar times vector product.
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A The CUDA Architecture

A.1 The CUDA Programming Model

A.1.1 Kernels and Thread Hierarchy

The CUDA software architecture enables developers to execute their programs on NVIDIA GPUs
through concurrent global functions, or kernels. The kernel, when called, executes N times in
parallel by N different CUDA threads.
These threads are grouped together and organized into a thread block and grids of thread blocks,
the structure is up to the programmer or compiler to decide. Each thread block can hold up to 1024
threads, and is organized in three dimensions, (x, y, z). All threads within a thread block will execute
an instance of the kernel, and will be assigned a unique thread ID within that thread block. The
threads within a thread block can cooperate through shared memory and barrier synchronization.
A grid is a structure for blocks to be organized, just like thread blocks, grids uses three dimensional
indexes (Fig 5), but the limit of the grid size is substantially bigger, current version (Fermi) can
hold up to 655353 blocks. Unlike the block structure, threads within the same grid but outside the
same block do not have any synchronization or cooperation available between them. Each block
within the grid has its own unique block ID [4, 15].

Figure 5: Thread Hierarchy

A.2 GPU Hardware

A.2.1 Streaming Multiprocessor

The heart of the CUDA Architecture, the set of Streaming Multiprocessors (SM) that concurrently
executes thousands of threads through a unique architecture called Single-Instruction, Multiple-
Threads (SIMT). Each Streaming Multiprocessor contains instruction cache, warp schedulers, dis-
patch units, registers, execution units and memory (Fig 6).
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Figure 6: Streaming Multiprocessor

A.2.2 Execution Units and Load/Store Units

The SM has two different execution units, the CUDA core and the Special Function Units (SFU).
The SFUs handles and executes complex math operations, such as sine, reciprocal and square root
functions. The pipeline of the SFU is decoupled from the dispatch unit and allows for other execu-
tion units to be issued while the SFU is occupied [5].

Previously known as a programmable shader or streaming processor core, the CUDA core is a
relatively simple processing unit designed to execute only one instruction at a time per thread
before rapidly switching to another thread. Each core can do one operation at a time per thread
on either an integer unit or a floating-point unit, following the IEEE 754-2008 standard. Due to
its multithreaded design, the CUDA cores do not have their own registers, caches or load/store
units for accessing memory, instead all resources are shared between each thread in the Streaming
Multiprocessor.

To calculate source and destination addresses, the Streaming Multiprocessor is equipped with load-
/store units. This unit can execute one store or one load operation per clock cycle, however, when
sequential addresses are used for the same thread, the “uniform cache” can be utilized to perform
two load operations per cycle [5, 6].
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A.2.3 Warp

Every Streaming Multiprocessor manages and executes threads in a group of 32. This collection is
called a warp, a reference to the world of weaving. Unlike the thread blocks, the programmer has
no saying in how the thread should be divided among the warps. The partitions of threads in warps
are issued by the Streaming Multiprocessor, when one or more thread blocks are scheduled to be
executed, each warp gets threads with consecutive, increasing thread IDs. Each thread in a warp
starts at the same program address, but are free to branch and execute independently. Though,
given the SIMT instruction logic, if a thread diverge via a data-dependent conditional branch, the
execution of each path taken is serialized by the warp, disabling threads not on that path, converging
back to the same execution path when all paths completes. 48 warps can be managed by each SM,
utilizing the two warp schedulers and dispatch units [4].

A.2.4 Warp Scheduler

Each Streaming Multiprocessor has two warp schedulers and two dispatch units that work indepen-
dently of each other. Using this method, two instructions per cycle on two different warps can be
issued and executed concurrently. Since 48 warps can be managed per Streaming Multiprocessor,
and each warp has 32 threads, 1536 threads per Streaming Multiprocessor can be managed. How-
ever, each Streaming Multiprocessor only has 32 CUDA cores to execute instructions from at any
given time. Besides CUDA cores, the warp scheduler can also issue instructions to the load/store
unit as well as the special function units. The strength of the CUDA infrastructure comes from the
fact that switching between threads is instantaneous. When a thread has executed one instruction,
another thread can execute on the next clock cycle. This is possible due to warps executing inde-
pendently, and so the scheduler does not need to check for dependencies from within the instruction
stream, resulting in a very high throughput. Using double precision instruction however does not
support dual dispatch and will disable the concurrency of the dispatch unit [5, 6].

A.2.5 Multiprocessor Memory

The two types of memory only available inside a Streaming Multiprocessor are a register file and
shared memory. The register file is 128Kbyte and divided into 32768 32-bit registers, each register
is allocated for individual threads and can only be accessed by that thread. Registers are often used
to hold frequently accessed variables, and can be accessed at very high speed. Since the registers
are partitioned among the warps in a Streaming Multiprocessor there is a limit on how many regis-
ters than can be used per thread before reducing the number of thread blocks per multiprocessor.
Given that 1536 threads can be managed concurrently by the Streaming Multiprocessor and the
registration allocation unit size is 64 byte, 32768

2 = 16384, 2 · 32-bit registers can be allocated per
SM. Rounding down results in 16384

1536 = b10 2
3c = 10, 2 · 32-bit registers, which is equal to 20, 32-bit

registers [4, 15].

Unlike the register file, shared memory is allocated per thread block, and is therefore shared between
neighbor threads. The memory is stored in equally-sized memory models, called banks, and can be
accessed simultaneously. However, if two or more threads access the same memory module, a bank
conflict emerges and the access has to be serialized. The shared memory provide low latency and
high bandwidth memory access if no band conflicts occur, however, according to Vasily Volkov[9]
shared memory bandwidth is ≥6x lower than register bandwidth. Each Streaming Multiprocessor
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has 64 kilobyte of memory available for shared memory and L1 cache, distributed as 48 kilobyte /16
kilobyte or 16 kilobyte / 48 kilobyte, user configurable. The size of shared memory distributed per
block may reduce the number of thread blocks per multiprocessor. The maximum number of thread
blocks per Streaming Multiprocessor is 8, in that case it would give the maximum of 49152

8 = 6144
byte shared memory per thread block before less thread blocks would be issued per multiprocessor,
given that 48 kilobyte of shared memory was used [4, 7, 9].

In excess of the register file and the shared memory, each multiprocessor also has access to a
read-only constant memory space located in the device memory. To speed up reads from this mem-
ory location, the access is through a constant cache, shared between all functional units [4].

A.2.6 Device Memory

The main memory used by the CUDA architecture is located on the GPU in the form of graphics
double data rate (GDDR) DRAM, referred to as global memory. The DRAM is conventionally used
to hold video images and texture information for 3D rendering, but function as high-bandwidth,
off-chip memory for massively parallel applications. Compared to the system DRAM on the CPU
motherboard, the GDDR DRAM has a bit more latency, but higher bandwidth to make up for it.
The memory is accessed through the PCI-express interface both from the CPU and from the GPU
[7, 15].

To reduce the memory access latency for load, store and atomic operations, a parallel two level
cache memory architecture is used. Previously mentioned, each Streaming Multiprocessor has a
small first-level (L1) data cache, but they also share a larger common unified second-level (L2)
cache (Fig 7). The L2 cache connects with the GPU DRAM interface and the PCI-express inter-
face. The L2 cache stores requests from the SMs and their L1 cache, filling the instruction caches
and uniform data caches [7].

Figure 7: Memory Hierarchy
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A.3 Optimization Techniques

To gain maximum performance from CUDA applications, three basic strategies are available: maxi-
mum utilization, maximum memory throughput and maximum instruction throughput. To find out
which one of these strategies to use, finding the performance limiters by profiling the application is
advised.

A.3.1 Utilization

The fundamental rule of maximum utilization on a high level is to assign the right processor for
the right work. Serial workloads should be assigned to the CPU while parallel should be assigned
to the GPU. If there are multiple kernels, running them in parallel by using asynchronous function
calls and streams might be a good way of improving performance. When parallel workloads needs
to share data between threads and synchronization is required, algorithms should be mapped so
that the inter-thread communication is performed within a single thread block [4].

At a lower level, the application needs to always be “busy” in order to fully use the power of
the GPU. In other terms, the warp scheduler should always be issuing instructions for some warp
at every clock cycle. Since different instructions take different amount of clock cycles, there should
be enough warps to choose from so that there always is at least one that is ready for execution. The
word latency is here used as the amount of clock cycles it takes for a warp to be ready to execute
its next instruction, and the goal is to always “hide” the latency by having enough ready warps to
execute from. The biggest threat to this model is without doubt fetching input operands from the
off-chip global memory where latency is between 400 to 800 clock cycles. This can be compared
to the local registers with only 22 clock cycles. To completely hide 22 clock cycles, using 2 warp
schedulers at the same time, and each scheduler take 2 clock cycles to issue one instruction, 22
warps are required, assuming maximum instruction executing throughput. Synchronization points
also have a great contribution to warps not being ready for execution. When warps of the same
block needs to wait for the rest of the warps to finish their execution of instructions, these points
can force the multiprocessor to idle. To counter this effect, using multiple resident blocks per mul-
tiprocessor gives more independent warps [4].

The concept of occupancy is the ratio of active warps to the maximum number of warps sup-
ported on a Streaming Multiprocessor. A measurement of how efficiently the kernel will run on the
GPU. The limiting factors in the amount of warps supported by a SM are directly related to the
amount of registers, shared memory and size of thread blocks. To find out the occupancy from the
configurations with the previously mentioned variables, NVIDIA has released a simple Occupancy
Calculator [14]. This tool discourages the user from using too much shared memory as well as too
many registers. Vasily Volkov [9] however discusses the possibility to use instruction-level paral-
lelism together with thread-level parallelism as an alternative approach to occupancy to increase
throughput and performance.

A.3.2 Memory Throughput

Maximizing memory throughput starts with minimizing data transfers with low bandwidth, or
specifically, global memory. As previously stated, the latency for reading or writing data from
global memory is quite high compared to using on-chip memory such as registers or shared mem-
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ory. When accessing global memory, each warp coalesces the access of the threads within the warp
into a 32-, 64- or 128-byte memory transaction, depending on size of data accessed by each thread
together with memory address distribution. For example, if 4 threads within the same warp each
read one double value of 8 byte from global memory, this could be read in one single memory
transaction (Fig 8) [4].

Figure 8

To maximize memory throughput of the shared memory, having no bank conflicts, described in
appendix A.2.5, will yield the highest performance [4].

The use of the L1 cache could be useful when frequent access to the same global memory loca-
tion occurs within the same warp. However, since all the global memory access will be stored in
both the L1 and the L2 cache, having scattered memory locations will reduce the throughput, and
the L1 cache should be disabled to reduce over-fetch [4].

A.3.3 Instruction Throughput

Basically there are three approaches for maximizing instruction throughput: Choosing the right
arithmetic instruction, minimizing divergence and simply reducing the amount of instructions.

When it comes to arithmetic instructions, the number of clock cycles required for execution does
of course depend on the instruction, but also on the data type. For example, single-precision func-
tions have higher throughput than double-precision equivalents, but the result will implicitly loose
precision.

Any control flow instruction (if, switch, do, for, while) can have a major impact on performance
from causing threads of the same warp to take different paths (diverge). By letting the warp diverge,
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all paths needs to be serialized and the number of instructions that needs to be executed increases
for that warp [4].
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